
 Local Applications Table
Support for closed loops, etc.

Aug 28, 1990

A means of expansion of the VME local station system software is by the use of local
applications, which are separately-compiled procedures that are invoked by the
system during Data Access Table processing. The Local Applications Table (LATBL)
contains the entries that result in their invocation.

Invocation context
During Update task processing of the Read Data Access Table (RDATA), one

particular entry causes the LATBL entries to be processed. This means that local
applications are invoked during updating of the datapool, likely to be positioned
either at or near the end of RDATA.

Each local application (LA) is expected to be written as a Pascal procedure, just as are
application page programs. The calling sequence is as follows:

TYPE
TrigType = (init, term, kbint, cycle, net);
ParamList = RECORD

sVarPtr: sVarPtrType;
enableBit: Integer;
params: ARRAY[1..9] OF Integer;

 END;
PROCEDURE LocalApp(trig: TrigType; VAR LAEntry: ParamList);

The first argument is the same as that used by application page programs. (The kbint
and net options may not apply.) The init call occurs the first time that the program
is invoked since being enabled. The term call occurs when the LA is being disabled.
The cycle call is the normal one given each 15 Hz cycle or whenever directed via a
special Data Access Table entry.

The second argument is a ptr to a part of the LATBL entry. It points to a structure in
the table entry reserved for a ptr to the LA’s static variables and an array of up to 10
integers, the first of which specifies the local binary Bit used as the enable/disable
control for this invocation. The other integer array elements may be anything else
required by the particular LA.

During the init call, the LA is expected to allocate memory for its own static variable
requirements. This can be done by calling this routine:

Function Alloc(sVarSize: Longint): sVarPtrType;

This call invokes the pSOS memory allocation routine and returns a ptr to the
allocated memory. If the storage cannot be allocated, a NIL ptr is returned.

When the sVarPtr is returned by Alloc, the LA should save it in the first longword
of its ParamList structure. This is necessary because the LA is a Pascal procedure
that must be invoked multiple times during the time that its LATBL entry is enabled.
Any information that must be saved by the LA across calls to it must be stored in this
static variable space. Note that a given LA may be invoked multiple times with
different ParamList structures. An example is the Linac rf gradient regulation that is to
be done for 3 rf stations by one local station. This will use 3 entries in LATBL but only a
single entry in CODES for the gradient regulation program (procedure).

When the term call is made, the LA should free its static variable allocation by calling
this routine:

Procedure Free(statVarPtr);

This procedure simply frees the memory allocated by Alloc.

Local Applications Table
A new system table (#14) supports local applications. An entry in this table has the

following format:

status

enable Bit#ptr to static variables other params…

 namecount

The status word is a copy of the previous enable bit reading. Comparing this value
with the current enable bit reading allows the system logic to decide what to use for
the trig argument in the call to the LA. The enable bit, when set, signifies that the
entry in LATBL is enabled. When an LA entry makes a transition from disabled to
enabled, the init call is used. The LA is expected to allocate any required static
variables during this first execution. As long as it continues to remain enabled, the
cycle call is used. When it makes a transition from enabled to disabled, the term call
is used. Since the LA frees any static variable space during this execution, the act of
disabling a local application means it will “start over” when it is re-enabled.

The program to be run is identified by 4-character name. Along with the type code of
LOOP, the CODES table of downloaded separately-compiled programs is searched for a
match, and the address of the executable copy of the program is used as the target for
the call. The first time that the program is accessed, for the init call, a checksum
check is performed to insure that the downloaded code has not been corrupted, and
the program is copied into newly-allocated dynamic memory for execution. This
means that the downloadable area is always available to receive a new version.

Downloading a new LA
When a change is to be made in a LA program, the new code is downloaded

without concern for the currently-executing code. The LA scan finds the name of the
LA and the ptr to the executing code (in on-board memory) in the CODES table entry
corresponding to that name. The process of downloading leaves this pointer alone
while the code is copied into a newly-allocated area.

When downloading is complete, the checksum is sent to be stored in the CODES table
entry, and the ptr to the downloaded code is marked (by setting its ls bit) to show that
it is a fresh copy.

Local Applications Table p. 2

LATBL table processing
When LATBL entries are scanned by the Update task, and a fresh downloaded copy

of the code is detected, and the type of call was to be a cycle call, the call type is
altered to a term call. This gives a chance for the LA to free any allocated static
variable storage and “clean up its act” in general. After any term call, the saved copy
of the LA’s enable bit reading is cleared. This will cause an init call to be given on
the next cycle if the LA is still enabled. The checksum will again be checked and new
memory allocated for execution in on-board ram.

After all LATBL entries have been scanned, a separate scan is made over the LOOP
entries in the CODES table. For each entry which has the fresh download bit set, the bit
is cleared, the executable area is freed and its ptr cleared.

The result of the above logic is that those entries which use the program just
downloaded will be disabled and re-enabled automatically the very next cycle. (If it is
desired to prevent an alarm message from being sent, in the case that the
enable/disable status bit is being monitored, one can merely elect to use the 2X option
with that status bit, since the bit will be disabled for only one cycle.) This means the
new version of the code will take effect right away. To prevent this, either disable all
LATBL processing by disabling the Data Access Table entry, or disable all LA entries
which use the program to be downloaded. The local application may prevent this by
disabling itself during term processing.

PAGEP table processing
The index page logic directs the call-up of application pages. When a page is being

called up, if the lo byte of the longword which contains the pointer to the entry point
of the application page program is nonzero, the 4-byte “pointer” is assumed to be a
program name of type PAGE. (Note that this implies that using a ptr in the old way can
still work as long as the entry point address is on a 256-byte boundary.) A search is
made for a match in the CODES table, the download area is sum-checked, memory is
allocated in on-board ram for it, and the program is copied to that area for execution.

When the program terminates, either because a new page is called up or a return is
made to the index page, a scan is made of the CODES table. The allocated area of any
PAGE type entry in the CODES table is freed, and its pointer is cleared. This is done
because only one PAGE program can run at a time. Note that this is in contrast to the
LOOP type programs, in which many can be running at once.

TASK or INIT processing
New tasks may be added to the system code by making a scan at reset time which

looks through the CODES table for any entries of type TASK or INIT. Such entries can
be copied into executable memory and called. What they do depends upon how they
are written. Such a program could spawn and activate a task, for example. Or it could
simply do some job at reset time. Only one call would be made to such a program, and
it would be made from the ROOT task. This adds another dimension to system
configuration possibilities.

Local Applications Table p. 3

